

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Architektura systemów komputerowych - Architecture of computer systems

Course			
Field of study Teleinformatics			Year/Semester 1/2
Area of study (specialization)			Profile of study general academic
Level of study first-cycle studies			Course offered in Polish
Form of study full-time			Requirements compulsory
Number of hours			
Lecture 30	Laboratory cl 30	asses	Other (e.g. online)
Tutorials 0	Projects/sem 0/0	inars	
Number of credit points 5			
Lecturers			
Responsible for the course/l	ecturer:	Responsible	for the course/lecturer:
prof. dr hab. inż. Ryszard Stasir Telekomunikacji Multimedia ryszard.stasinski@put.pozna	iski, Instytut Inej, 61 665 3839, n.pl	Dr Sławomi Multimedial <u>slawomir.m</u> Dr Krzysztof Multimedial	r Michalak, Instytut Telekomunikacji Inej, 61 6653824, <u>ichalak@put.poznan.pl</u> FArnold, Instytut Telekomunikacji Inej, 61 665 3868, nold@put.poznan.pl

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic skills in C programming, basics of digital techniques

Course objective

Knowledge about hardware-software interface of a typical computer (ISA - Instruction Set Architecture) necessary for understanding phenomena leading to reduction of computer computational efficiency when coding an algorithm.

Course-related learning outcomes

Knowledge

Knowledge about contemporary procesor hardware optimization techniques (pipelining, instructionlevel parallelism, speculative computing), and memory hierarchy, including problems appearing in multiprocessor systems.

Skills

Assembler programming of a 32-bit computer (ARM, or similar), including knowledge about avoiding pipeline hazards, and code optimization for instruction-level parallel processors.

Social competences

Knowledge about rules governing program construction for software compatibility.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: final exam, 10 questions for 1 point each, passing level - 5.1 point. Exercises: correctly done lab exercises, correctly written reports, and knowledge verification, 2 colloquia.

Programme content

Lecture:

Computer revolution, testing of computer performance, Amdahl's law, current tendencies in computing equipment

Instruction classes, and their description, instructions and computer components, instruction formats, relations between assembler and high-level language instructions, data structures implementation. Fixed-point and floating-point implementations of basic arithmetical operations (addition/subtraction, multiplication, division), Error control in IEEE 754 standard, commutativity in floating-point operations.

Instruction phases and their link with computer subsystems, pipelining: idea, simple sequential and pipelined processor, pipeline optimization, pipeline hazards and how they are avoided, Exceptions and interrupts, and their influence on pipeline implementation, instruction-level parallelism: basic solutions, impact on pipeline.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Memory hierachy, why it is necessary, types of caches, cache misses, virtual memory: organization, cooperation with higher memory levels, memory protection - priviledged operating modes, coherence and homogeneity in multiprocessor systems.

Computer peripherals: behaviour and reliability, mass memory technologies, RAID.

The art. Of multiprocessor programming: sequential and parallel parts of an algorithm, communication, multithreading, vector processors, GPU.

Exercises - laboratory: Fixed-point arithmetic Other operations of fixed-point unit Floating-point operations, part 1 Floating-point operations, part 2 Assembler control instructions Tables in assembler SIMD mode Parameter transfer to a function, part 1 Parameter transfer to a function, part 2 Exceptions and interrupts handling Avoiding pipeline hazards Multithreading programming

Teaching methods

																																																																															7										
		L	e	ct	u	r	е	-	p	r	e	S	e	n	t	a	ti	0	n	,	e	Х	e	r	С	is	e	S	ι	JS	si	n	ıg	; I	la	ık	С	k	ci	t	S																																						,										
5	٢.	1	1	1.	17	1	17	17	Ċ.,	۰,	6.	۰,	с.	1.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	۰,	۰.	6	7	1	1	1	1	٢.	e.	1	1	1	1	۰.	1.	1	1	1	1	1	1	1	17	6.	67	۰,	1.	1.	1	1	1	1	1.	6.	11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\mathcal{L}	ċ.

Bibliography

Basic

D. Patterson, J. Hennessy: Computer Organization and design, ed. 4 (or newer), Elsevier 2009.	<u> </u>

Additional

```
J. Hennessy, D. Patterson: Computer Architecture: A Quantitative Approach, ed. 4 (or newer), 2011
```

Breakdown of average student's workload

	Hours	ECTS
Total workload	116	5.0
Classes requiring direct contact with the teacher	60	3.0
Student's own work (preparation for tests, preparation for laboratory classes, literature studies)	56	2.0